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Abstract

We combine the new moving mesh smoothing, based on the integration of an ordinary differential equation coming from a
given functional, with the new lazy flip technique, a reversible edge removal algorithm for local mesh quality improvement. These
strategies already provide good mesh improvement on themselves, but their combination achieves astonishing results not reported so
far. Provided numerical comparison with some publicly available mesh improving software show that we can obtain final tetrahedral
meshes with dihedral angles between 40◦ and 123◦.
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1. Introduction

The two key operations for mesh improving are smoothing (which moves the mesh vertices) and flipping (which
changes mesh topology without moving the mesh vertices). Previous work shows that the combination of these two
operations achieves better results than if applied individually [1,2]. In this paper we combine a new smoothing and a
new flipping methods to one mesh improvement scheme.

Flips are the most efficient ways to locally improve the mesh quality and they have been extensively addressed in the
literature [1–4]. In the most simple cases, the basic flip operations, such as 2-to-3, 3-to-2, and 4-to-4 flips, are applied
as long as the mesh quality can be improved. The more effective way is to combine several basic flip operations, such
as the edge removal operation, which is an extension of the 3-to-2 and 4-to-4 flips. This operation removes an edge
with n ≥ 3 adjacent tetrahedra and replaces them by m = 2n − 4 new tetrahedra (the so-called an n-to-m flip). There are
at most Cn−2 possible cases, where Cn =

(2n)!
(n+1)! n! is the Catalan number. If n is small (e.g., n < 7), one can enumerate all

the possible cases, compute the mesh quality for each of the individual cases, and then pick the optimal one. Another
way is to use the dynamic programming to find the optimal configuration. However, the number of cases increases
exponentially and finding the optimal solution with brute force is very time-consuming.
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In this paper, we propose the so-called lazy searching flips. The key idea is to automatically explore sequences of
flips in order to remove a given edge in the mesh. If a sequence of flips leads to a configuration which doesn’t improve
the mesh quality, the algorithm reverses this sequence and explores another one (see section 3 and Figs 1a to 1c). Once
an improvement is found, the algorithms stops the search and returns without exploring the remaining possibilities.

The lazy searching flips are accompanied with a smoothing procedure. Mesh smoothing improves the mesh quality
by improving vertex locations, typically through Laplacian smoothing or some optimization-based algorithms. Most
commonly used mesh smoothing methods are Laplacian smoothing and its variants [5,6], where a vertex is moved to
the geometric center of its neighboring vertices. While economic, easy to implement, and often effective, Laplacian
smoothing guarantees neither a mesh quality improvement nor the mesh validity.

Alternatives are optimization-based methods that are effective for a variety of mesh quality measures, e.g., for
the ratio of the area to the sum of the squared edge lengths [7] or the ratio of the volume to a power of the sum of
the squared face areas [8], the condition number of the Jacobian matrix of the affine mapping between the reference
element and physical elements [9], or various other measures [1,10–12]. Most of the optimization-based methods are
local and sequential, with Gauss-Seidel-type iterations being combined with location optimization problems over each
patch. There is also a parallel algorithm that solves a sequence of independent subproblems [13].

In our scheme, we employ the moving mesh PDE (MMPDE) method, defined as the gradient flow equation of a
meshing functional (an objective functional in the context of optimization) to move the mesh continuously in time.
Such a functional is typically based on error estimation or physical and geometric considerations. Here, we consider
a functional based on the equidistribution and alignment conditions [14] and employ the recently developed direct
geometric discretization [15] of the underlying meshing functional on simplicial meshes.

Compared to the aforementioned mesh smoothing methods, the considered method has several advantages: it can be
easily parallelized, it is based on a continuous functional for which the existence of minimizers is known, the functional
controlling the mesh shape and size has a clear geometric meaning, and the nodal mesh velocities are given by a simple
analytical matrix form. Moreover, the smoothed mesh will stay valid if it was valid initially [20].

In this paper we provide a detailed numerical study of a combination of the lazy searching flips with the MMPDE
smoothing. More specifically, we compare the results of the whole algorithm with Stellar [2], CGAL [16] and
mmg3d [17]. We also compare the lazy searching flips and the MMPDE smoothing with the flipping and smoothing
procedures provided by Stellar.

2. The moving mesh PDE smoothing scheme

The key idea of this smoothing scheme is to move the mesh vertices via a moving mesh equation, which is formulated
as the gradient system of an energy function (the MMPDE approach). Originally, the method was developed in the
continuous form [18,19]. In this paper, we use its discrete form [15,20,21], for which the mesh vertex velocities are
expressed in a simple, analytical matrix form, which makes the implementation more straightforward to parallelize.

2.1. Moving mesh smoothing

Consider a polygonal (polyhedral) domain Ω ⊂ Rd, d ≥ 1, let the simplicial mesh under consideration be Th, and
denote the numbers of its vertices and elements by #Nh and #Th. Let K be a generic mesh element and K̂ the reference
element taken as a regular simplex with the volume |K̂| = 1/#Th. Further, let F′K be the Jacobian matrix of the affine
mapping FK : K̂ → K from the reference element K̂ to a mesh element K. For notational simplicity, we denote the
inverse of the Jacobia by JK , i.e., JK ≡ (F′K)−1. Then, the mesh Th is uniform if and only if

|K| =
|Ω|

#Th
and

1
d

tr
(
JT

KJK

)
= det

(
JT

KJK

) 1
d
∀K ∈ Th. (1)

The first condition requires all elements to have the same size and the second requires all elements to be shaped
similarly to K̂ (these conditions are the simplified versions of the equidistribution and alignment conditions [19,22]).

The corresponding energy function for which the minimization will result in a mesh satisfying (1) as closely as
possible is

Ih =
∑

K

|K| G (JK , det JK) with G(J, det J) = θ
(
tr

(
JJT

)) dp
2

+ (1 − 2θ) d
dp
2 (det J)p, (2)
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where θ ∈ (0, 0.5] and p > 1 are dimensionless parameters (in section 5 we use θ = 1/3 and p = 3/2). This is a specific
choice and other meshing functionals are possible. An interested reader is referred to [23] for a numerical comparison
of meshing functionals for variational mesh adaptation.

Ih is a Riemann sum of a continuous functional for variational mesh adaptation based on equidistribution and
alignment [14] and depends on the vertex coordinates xi, i = 1, . . . , #Nh. The vertex velocities for the mesh movement
are defined as

dxi

dt
= −

(
∂Ih

∂xi

)T

, i = 1, . . . , #Nh, (3)

where the derivatives dxi
dt are considered as row vectors.

2.2. Vertex velocities and the mesh movement

The vertex velocities can be computed analytically [15, Eqs (39) to (41)] using the scalar-by-matrix differentia-
tion [15, Sect. 3.2]. Denote the vertices of K and K̂ by xK

i and x̂i, i = 0, . . . , d, and define the element edge matrices
as

EK = [xK
1 − xK

0 , . . . , x
K
d − xK

0 ] and Ê = [x̂1 − x̂0, . . . , x̂d − x̂0] with ÊE−1
K = JK .

Then, the local mesh velocities are given element-wise [15, Eqs (39) and (41)] as
(vK

1 )T

...

(vK
d )T

 = −GE−1
K + E−1

K
∂G
∂J

ÊE−1
K +

∂G
∂ det J

det(Ê)
det(EK)

E−1
K and (vK

0 )T
= −

d∑
j=1

(vK
j )T

, (4)

where G is as in (2) and ∂G
∂J and ∂G

∂ det J are the derivatives of G with respect to its first and second arguments (evaluated
at JK = ÊE−1

K and det(J) = det(Ê)/ det(EK)). For the considered G we have [15, Example 3.2]

∂G
∂J

= dpθ
(
tr(JJT )

) dp
2 −1

JT and
∂G

∂ det J
= p(1 − 2θ)d

dp
2 (det J)p−1.

With the element-wise vertex velocities, the moving mesh equation (3) becomes

dxi

dt
=

∑
K∈ωi

|K| vK
iK
, i = 1, . . . , #Nh, (5)

where ωi is the patch of the vertex xi and iK is the local index of xi on K.
During smoothing, we use the current vertex locations as the initial position and integrate the equation (5) for a time

period (with the proper modification for the boundary vertices, see section 2.3). The connectivity is kept fixed during
the smoothing step. In our examples in section 5 we use the explicit Runge-Kutta Dormand-Prince ODE solver [24].

The moving mesh governed by (5) will stay nonsingular if it is nonsingular initially: the minimum height and the
minimum volume of the mesh elements will stay bounded from below by a positive number depending only on the
initial mesh and the number of the elements [20].

2.3. Velocity adjustment for the boundary vertices

The vertex velocities need to be modified for the boundary vertices. If xi is a fixed boundary vertex, then its velocity
is set to zero: ∂xi

∂t = 0. If xi is allowed to move along a boundary curve or a surface represented by the zero level set of
a function φ, then the vertex velocity ∂xi

∂t is modified such that its normal component along the curve (surface) is zero:

∇φ(xi) ·
∂xi

∂t
= 0.
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In our examples (section 5), the input geometry is a piecewise linear complex (PLC) [25], for which the velocity
adjustment is straight forward:

facet vertices: project the velocity onto the facet plane,
segment vertices: project the velocity onto the segment line,

corner vertices: set the velocity to zero.

For a general non-polygonal or non-polyhedral domain, we have to move the vertex and then project it onto the
boundary to which it belongs, otherwise it is not guaranteed to be on the domain boundary after the smoothing step.

3. Lazy searching flips

In this section, we explain how to remove an edge and how to reverse the removal using flips. Then we present the
lazy searching algorithm for the mesh improvement.

3.1. Edge removal and its inverse

A basic edge removal algorithm [26] performs a sequence of elementary 2-to-3 and 3-to-2 flips. We extend this
basic algorithm with the possibility to inverse the flip sequence. The idea is straightforward: the sequence is saved
online without using additional memory.

Let [a, b] ∈ Th be an edge with endpoints a and b and A[0, . . . , n − 1] be the array of n ≥ 3 tetrahedra in Th sharing
[a, b]. For simplicity, we assume that [a, b] is an interior edge of Th, so that all tetrahedra in A can be ordered cyclically
such that the two tetrahedra A[i mod n] and A[(i + 1) mod n] share a common face. Given such an array A of n
tetrahedra, we want to find a sequence of flips that will remove the edge [a, b]. Moreover, we also want to reverse this
sequence in order to return to the original state. In the following, we will write i instead of i mod n, i.e., the index i
will take values in {0, 1, . . . , n − 1}.

Our edge removal algorithm includes two subroutines

[done,m] := flipnm(A[0, . . . , n − 1], level) and flipnm_post(A[0, . . . , n − 1],m),

with an array A (of length n) of tetrahedra and an integer level (maximum recursive level) as an input.

flipnm does the “forward” flips to remove the edge [a, b]. It returns a boolean value indicating whether the edge
is removed or not and an integer m (3 ≤ m ≤ n): if the edge is not removed (done = FALSE), m indicates the
current size of A (initially, m := n).

flipnm_post must be called immediately after flipnm. It releases the memory allocated in flipnm and it can
perform the “backward” flips to undo the flip sequence performed by flipnm.

The basic subroutine flipnm(A[0, . . . , n − 1], level) consists of the following three steps:

1. Return TRUE if n = 3 and flip32 is possible for [a, b] and FALSE otherwise.
2. For each i ∈ {0, . . . , n − 1} try to remove the face [a, b, pi] by flip23. If it is successfully flipped, reduce |A| by 1.

Update A[0, . . . , n − 2] to contain the current set of tetrahedra at the edge [a, b]. Reuse the last entry (A[n − 1]) to
store the information of this flip23, refer (see Figure 1c). It then (recursively) calls flipnm(A[0, . . . , n−2], level).
When no face can be removed, go to Step 3.

3. If level > 0, try to remove an edge adjacent to [a, b] by a flipnm. For each i ∈ {0, . . . , n − 1} let [x, y] be
the edge either [a, pi] or [b, pi]. Initialize an array B[0, . . . , n1 − 1] of n1 ≥ 3 tetrahedra sharing [x, y] and call
flipnm(B[0, . . . , n1 − 1], level − 1). If [x, y] is successfully removed, reduce |A| by 1. Update A[0, . . . , n − 2] to
contain the current set of tetrahedra at the edge [a, b]. Reuse last entry (A[n − 1]) to store the information of this
flipnm and the address of the array B (to be able to release the occupied memory later). Then (recursively) call
flipnm(A[0, . . . , n − 2]). Otherwise, if [x, y] is not removed, call flipnm_post(B[0, . . . , n1 − 1],m1) to free the
memory. Return FALSE if no edge can be removed.
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Since flipnm is called recursively, not every face and edge should be flipped in Steps 2 and 3. In particular, if B is
allocated, i.e., flipnm is called recursively, we skip flipping faces and edges belonging to the tetrahedra in A ∩ B.

In the most simple case, that is, without considering the option to reverse the flips, flipnm_post(A[0, . . . , n− 1],m)
simply walks through the array A from A[m] to A[n − 1] and checks if there is a saved flipnm flip. If so, the saved
array address B is extracted and its memory is released.

In Step 2 there are at most
(

n
n−3

)
/(n − 3)! different flip sequences, depending on the specific choice of faces in A.

Each individual flip sequence is equivalent to a sequence of the n vertices (apexes) in the link of the edge [a, b]. We
reuse the entries of the array A to store each flip sequence. After a 2-to-3 flip, the number of the tetrahedra in the array
A is reduced by 1, then we rearrange these tetrahedra by keeping the original order to the first n − 1 entries of A. We
then use the last entry A[n − 1] to store this flip. In particular, the following information is saved:

• a flag indicating a 2-to-3 flip;
• the original position i, meaning that the face [a, b, pi] is flipped;

This allows the inversion of a particular 2-to-3 flip as follows:

• use the position i to locate the tetrahedra A[i − 1] = [a, b, pi−1, pi+1] and get the three tetrahedra [pi−1, pi+1, a, b],
[pi−1, pi+1, b, pi] which share the edge [pi−1, pi+1];

• perform a 3-to-2 flip on these three tetrahedra;
• insert two new tetrahedra into the array A: A[i − 1] = [a, b, pi, pi−1], and A[i] = [a, b, pi, pi+1].

The above operations allow to reverse any sequence of flips stored in the array A.
In Step 3, if the selected edge [a, pi] is removed, the sequence of flips to remove [a, pi] is stored in the array B. We

then use the last entry A[n − 1] to store this sequence of flips. In particular, the following information is saved:

• a flag indicates that this is a sequence of flips;
• the original position i, i.e., the edge [a, pi] is flipped;
• the address of array B in which the sequence of flips is stored.

This information allows us to inverse exactly this sequence of flips.

3.2. Lazy searching flips

During the mesh improvement process, we want to perform flips to improve the objective mesh quality function.
Consider the case of removing an edge in order to improve the local mesh quality. The maximum possible number of
flips at an edge is the Catalan number Cn−2 (n is the size of A). Hence, the direct search for the optimal solution is only
meaningful if n is very small. In most situations, an edge may not be flipped if we restrict ourselves to adjacent faces of
the edge. Our strategy is to search and perform the flips as long as they can improve the current mesh quality. Our lazy
searching scheme is not restricted by the number n and can be extended to adjacent edges.

The lazy searching flip scheme is like a walk in a k-ary search tree (a rooted tree with at most k children at each
node, see Fig. 1b). The root represents the edge [a, b] to be flipped and each of the tree nodes represents either an
adjacent face [a, b, pi] or an adjacent edge [a, pi] or [b, pi] of [a, b]. The edges of the tree represent our search paths.
In particular, the directed edge from level l to l + 1 represents either a flip23 or a flipnm, and the reversed edge
represents the inverse operation. The tree depth is the parameter level.

If at level > 0 we want to decide if an adjacent face [a, b, pi] should be flipped, we not only check if [a, b, pi] is
flippable, but also check if this flip improves the local mesh quality. Note that we need to check only two of the three
new tetrahedra: [a, pi−1, pi, pi+1] and [b, pi−1, pi, pi+1]. The tetrahedron [a, b, pi−1, pi+1] will be involved in the later
flips, and will be flipped if the edge [a, b] is flipped.

Once an improvement is found, the algorithms stops the search and returns without exploring other possibilities.

4. Mesh improvement strategy

The goal of the proposed algorithm is to obtain a new isotropic mesh whose elements are “as close as possible” to
the equilateral one. To achieve this goal we combine the local and global mesh operations described in sections 2 and 3.
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(a) The initial state. (b) The lazy flip search tree to remove the edge [a, b]. pi identifies the face [a, b, pi] which is flipped via a 2-to-3 flip.
The search path is highlighted with arrows.

(1) (2) (3) (4)

(5) (6) (7) (8)

(c) The sequence of flips. The edge [a, b] is represented by one vertex in the center (except (8)). A face [a, b, pi] is represented by an edge. Array
attached to each figure show the current content of A. (1) n = 5 tetrahedra share the edge [a, b]. In (2) and (3), [a, b, p1] is removed by a 2-to-3 flip.
In (4) and (5), a 2-to-3 flip is done on [a, b, p3]. In (6) and (7), [a, b, p5] is removed by a 2-to-3 flip. In (8), the edge [a, b] is removed by a 3-to-2 flip.

Figure 1: An example of an edge removal by a sequence of flips.

4.1. Mesh quality

To say “as close as possible to an equilateral tetrahedron” is clear but it is not sufficiently precise from the
mathematical point of view. To have a more precise criterion, the majority of the mesh improvement programs define a
computable quantity q(K) which quantifies how far a tetrahedron K is from being equilateral [2,17,27–30]. Here, we
take into account the following two:

Aspect Ratio: This is one of the most classical ways to evaluate the quality of a tetrahedron. It is defined as

qar(K) :=

√
2
3

L
h
, (6)

where L is the longest edge and h is the shortest altitude of K. qar(K) ≥ 1 by construction and an equilateral
tetrahedron is characterized by qar(K) = 1.
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Min-max Dihedral Angle: For each tetrahedron K we consider both the minimum and the maximum dihedral angles
θmin,K and θmax,K . An equilateral tetrahedron has θmin,K = θmax,K = arccos (1/3) ≈ 70.56◦. Applying an operation
that increases θmin,K or decreases θmax,K of a given tetrahedron K makes K “closer” to the equilateral shape. Note
that this is not a classical quality measure, since we associate two quantities with each tetrahedron, which is one
of the novel aspects of the proposed mesh improvement procedure.

These two quality measures refer to a single tetrahedron K of the mesh. However, the design of our mesh
improvement scheme requires a quality measure for the whole mesh as a stopping criterion. To estimate the quality of
the whole mesh we define

Q(Th) := min
K∈Th

(
θmin,K

)
. (7)

This is a very effective quality measure. Indeed, if we consider a target dihedral angle θlim and obtain a mesh Th with
Q(Th) > θlim, then all dihedral angles are guaranteed to be greater than θlim.

4.2. The scheme

The inputs for the mesh improvement algorithm are: a tetrahedral mesh T ini
h of a PLC and a target minimum angle

θlim. The output is a mesh T f in
h with all elements having the smallest dihedral angle greater than θlim.

Algorithm 1 The proposed mesh improvement scheme.
Improve(T ini

h , θlim)
1: repeat
2: repeat
3: repeat
4: repeat
5: repeat
6: MMPDE-based smoothing
7: Lazy Flips
8: until no point is moved or no flip is done or Q(Th) ≥ θlim

→ smooth and flip

9: remove the edges le < 0.5 lave
10: Lazy Flips
11: until no edge is contracted or Q(Th) ≥ θlim
12: split the edges le > 1.5 lave
13: Lazy Flips
14: until no edge is split or Q(Th) > θlim
15: split the tetrahedrons K such that θmin,K < θlim
16: Lazy Flips
17: until no tetrahedron is removed or Q(Th) > θlim

→ main loop

18: change the flip criterion for the Lazy Flip
19: until no operation is done in the main loop or Q(Th) > θlim

The scheme consists of five nested “repeat . . . until” loops, whose stopping criterion depends on the operations
done inside the loop and Q(Th). We apply the MMPDE smoothing and the Lazy Flip in the most internal loop (lines 5
to 8). The Lazy Flip is also exploited in the outer loops both on the whole mesh (lines 10, 13 and 16) and on the
tetrahedrons involved in the local operations (lines 9, 12 and 15).

The Lazy Flip is based on an objective function and it is possible to consider several flipping criteria, which makes
the design of the scheme flexible. We exploit this feature by using two objective functions and changing the flipping
criterion in each iteration of the outer loop (line 18). In this paper we consider the following two (other criteria can be
considered as well):

1. maximize θmin,K and minimize θmax,K simultaneously, 2. minimize of the aspect ratio.
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The stopping criterion is always based on the minimum dihedral angle, Q(Th), and the number of operations done.
After a number of iterations both the flipping and the smoothing procedure can stagnate, i.e., the mesh Th converges

to a fixed configuration where no more flips can be done and the smoothing procedure can’t improve the point position
anymore. Unfortunately, it is not a priori guaranteed that such a mesh satisfies the constraint on the target minimum
dihedral angle θlim. To overcome this difficulty, we apply edge splitting, edge contraction, and tetrahedron splitting
when this stagnation occurs (lines 9, 12 and 15 in Algorithm 1).

For the edge contraction and splitting we use the standard edge length criterion: we compute the average edge length
lave of the actual mesh, contract the edges shorter than 0.5 lave (line 9), and split (halve) the ones longer than 1.5 lave
(line 12). In line 15, we split a tetrahedron K with θmin,K < θlim via a standard 1-to-4 flip by placing the new added
point at the barycentre of K [32]. In this way, the algorithm can proceed with both flipping and smoothing towards a
mesh satisfying Q(Th) > θlim. At the moment, we are not interested in optimizing these operations, we exploit them
only to overcome the algorithm stagnation.

The MMPDE smoothing can be easily parallelized because the computation of nodal velocities (Eqs (4) and (5))
requires local, element-wise computations which are independent from each other; we parallelize it with OpenMP [31]
in order to accelerate the mesh improvement scheme. On the other hand, the Lazy Flip may propagate to neighbours and
neighbours of neighbours, thus, it is complex and difficult to parallelize; in our tests we use a sequential implementation.

5. Numerical examples

We compare the new mesh improvement scheme with the aggressive mesh improvement algorithm of Stellar [2],
the remeshing procedure of CGAL [16], and mmg3d [17] using the following examples:

• Rand1 and Rand2 are tetrahedral meshes of a cube generated by inserting randomly located vertices inside and
on the boundary [2] (figs. 3 and 4),

• LShape is a tetrahedral mesh of an L-shaped PLC generated by TetGen [26] without optimizing the minimum
dihedral angle (switches -pa0.019, Fig. 5),

• LenChallenge is a tetrahedral mesh of a cube with five holes generated by TetGen without optimizing the
minimum dihedral angle (switches -pa0.001, Fig. 6),

• TetgenExample is a tetrahedral example mesh of a non-convex PLC with a hole provided with TetGen (Fig. 7).

We compare the histograms of the dihedral angles of final meshes, the minimum and the maximum dihedral angles
θmin,Th and θmax,Th , and the mean dihedral angle µTh and its standard deviation σTh [33].

Smoothing and flipping on themselves. We test the effectiveness of the MMPDE smoothing and the Lazy Flip on
themselves by using smoothing and flipping separately: we compare the MMPDE smoothing with the Stellar
smoothing and the Lazy flip (level = 3) with Stellar flips.

The results of the Lazy Flip are comparable with Stellar flips (Fig. 2, first row). However, the MMPDE smoothing
is better than its counterpart in Stellar (Fig. 2, second row): in both examples it achieves larger θmin,Th , noticeably
smaller θmax,Th , and a smaller standard deviation of the mean dihedral angle.

Note also, that the combination of smoothing and flipping produce much better results then if using them separately
(cf. Fig. 2a with Fig. 5 and Fig. 2b with Fig. 7b, respectively).

Full scheme. We compare the whole scheme with the aggressive mesh improvement algorithm Stellar [2], the
remeshing procedure of CGAL [16], and mmg3d [17] (Figs 3 to 7).

Although all methods provide good results, the new scheme is better: θmin,Th is larger than the value obtained
by CGAL or mmg3d and comparable to the value obtained by Stellar. Moreover, θmax,Th is smaller than the values
obtained by Stellar, CGAL, or mmg3d in all the examples by one.

The mean dihedral angle µTh is always around 69.6◦, which is close to the optimal value of arccos (1/3) ≈ 70.56◦.
The standard deviation σTh for the new method is always smaller than for other methods. This quantitative consideration
becomes clearer from the shape of the histograms in Figs 3 to 7: for our method, the dihedral angle distributions are
more concentrated around the mean value in comparison to the distributions provided by Stellar, CGAL, and mmg3d.
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Lazy Flip

θmin,Th = 16◦

θmax,Th = 144◦

µTh = 69.71◦

σTh = 21.93

#Th = 3795

Stellar flipping

θmin,Th = 20◦

θmax,Th = 142◦

µTh = 69.83◦

σTh = 21.86

#Th = 3751

MMPDE smoothing

θmin,Th = 17◦

θmax,Th = 149◦

µTh = 69.01◦

σTh = 26.37

#Th = 4072

Stellar smoothing

θmin,Th = 14◦

θmax,Th = 159◦

µTh = 69.01◦

σTh = 28.01

#Th = 4072

(a) LShape.

Lazy Flip

θmin,Th = 14◦

θmax,Th = 146◦

µTh = 69.77◦

σTh = 22.74

#Th = 3043

Stellar flipping

θmin,Th = 16◦

θmax,Th = 151◦

µTh = 69.89◦

σTh = 25.98

#Th = 3332

MMPDE smoothing

θmin,Th = 20◦

θmax,Th = 144◦

µTh = 69.71◦

σTh = 21.93

#Th = 3795

Stellar smoothing

θmin,Th = 16◦

θmax,Th = 152◦

µTh = 69.27◦

σTh = 28.97

#Th = 3545

(b) TetgenExample.

Figure 2: Comparison of flipping only (first row) and smoothing only (second row) for the LShape and the TetgenExample.

For the TetgenExample (Fig. 7) we also provide aspect ratio histograms (the results for the other examples are very
similar and we omit them). The best aspect ratio distribution is clearly by our method and Stellar: for our method,
most of the elements in the optimized mesh have aspect ratios from 1.1 to 1.6, followed by the Stellar mesh with
most of the element aspect ratios in the range from 1.2 to 2.0; CGAL and mmg3d meshes contain many elements with
aspect ratio in the range from 2 to 4. This is in good agreement with the comparison of the dihedral angles, since
better dihedral angles lead to better aspect ratios. The reason for the better performance of Stellar and our method in
comparison to CGAL and mmg3d is partially due to the fact that CGAL and mmg3d are meshing and re-meshing tools (fast
but lower mesh quality), whereas Stellar and the new method are mesh optimization tools (more slowly but better
mesh quality).

We also observed that Stellar aggressively removes elements from the mesh during optimization, which results in a
much smaller number of mesh elements than in the original input. Our algorithm stays closer to the original number of
elements. For example, compare the number of elements for the Rand1 example (Fig. 3): the input mesh has 5104
elements, Stellar’s improved mesh has 1186 elements, whereas our method produces 3528 elements.

6. Conclusions

In all provided examples we obtain better results in terms of distributions of dihedral angles with respect to Stellar,
CGAL, and mmg3d. Thus, the new mesh improvement algorithm is effective.

There are several possibilities to extend this mesh improvement scheme. One possibility is to apply this method to
more general volume domains characterized by curved hulls. A second one is to obtain a more sophisticated way to
contract/split edges or tetrahedra, which can improve the performances of both the MMPDE smoothing and the Lazy
Flip. Finally, the MMPDE smoothing is based on the moving mesh method and, thus, allows a definition of a metric
field. Hence, it can be extended straightforwardly to the adaptive and anisotropic setting.
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Initial Mesh New Method

New Method

θmin,Th = 40◦

θmax,Th = 130◦

µTh = 69.70◦

σTh = 15.74

#Th = 3528

Stellar

θmin,Th = 39◦

θmax,Th = 138◦

µTh = 70.30◦

σTh = 20.18

#Th = 1186

CGAL

θmin,Th = 12◦

θmax,Th = 156◦

µTh = 69.25◦

σTh = 23.40

#Th = 3897

mmg3d

θmin,Th = 8◦

θmax,Th = 165◦

µTh = 69.98◦

σTh = 25.60

#Th = 5733

Figure 3: Rand1. The initial mesh with #Th = 5104, the final (optimized) mesh, and statistics of dihedral angles for the final meshes.

Initial Mesh New Method

New Method

θmin,Th = 40◦

θmax,Th = 123◦

µTh = 69.73◦

σTh = 15.33

#Th = 15 232

Stellar

θmin,Th = 39◦

θmax,Th = 138◦

µTh = 70.43◦

σTh = 20.34

#Th = 5489

CGAL

θmin,Th = 12◦

θmax,Th = 160◦

µTh = 69.26◦

σTh = 22.90

#Th = 16 078

mmg3d

θmin,Th = 1◦

θmax,Th = 175◦

µTh = 69.83◦

σTh = 24.78

#Th = 28 629

Figure 4: Rand2. The initial mesh with #Th = 25 704, the final (optimized) mesh, and statistics of dihedral angles for the final meshes.
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Initial Mesh New Method

New Method

θmin,Th = 40◦

θmax,Th = 119◦

µTh = 69.67◦

σTh = 15.89

#Th = 3102

Stellar

θmin,Th = 39◦

θmax,Th = 138◦

µTh = 70.17◦

σTh = 20.04

#Th = 2910

CGAL

θmin,Th = 13◦

θmax,Th = 159◦

µTh = 69.23◦

σTh = 23.69

#Th = 4264

mmg3d

θmin,Th = 18◦

θmax,Th = 142◦

µTh = 69.54◦

σTh = 22.21

#Th = 3859

Figure 5: LShape. The initial mesh with #Th = 4072, the final (optimized) mesh, and statistics of dihedral angles for the final meshes.

Initial Mesh New Method

New Method

θmin,Th = 38◦

θmax,Th = 129◦

µTh = 69.66◦

σTh = 16.39

#Th = 16 615

Stellar

θmin,Th = 38◦

θmax,Th = 139◦

µTh = 70.25◦

σTh = 19.86

#Th = 11 093

CGAL

θmin,Th = 3◦

θmax,Th = 173◦

µTh = 69.45◦

σTh = 29.56

#Th = 12 394

mmg3d

θmin,Th = 7◦

θmax,Th = 162◦

µTh = 69.52◦

σTh = 22.42

#Th = 15 713

Figure 6: LenChallenge. The initial mesh with #Th = 16 595, the final (optimized) mesh, and statistics of dihedral angles for the final meshes.
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Initial Mesh New Method

(a) The initial mesh with #Th = 3545 and the final optimized mesh.

New Method

θmin,Th = 38◦

θmax,Th = 125◦

µTh = 69.67◦

σTh = 16.33

#Th = 4563

Stellar

θmin,Th = 38◦

θmax,Th = 123◦

µTh = 70.23◦

σTh = 20.10

#Th = 2509

CGAL

θmin,Th = 7◦

θmax,Th = 164◦

µTh = 69.22◦

σTh = 28.52

#Th = 2187

MMG3

θmin,Th = 4◦

θmax,Th = 170◦

µTh = 69.52◦

σTh = 22.42

#Th = 15 713

(b) Dihedral angle comparison for the final meshes.

New Method Stellar

CGAL MMG3

(c) Aspect ratio comparison for the final meshes.

Figure 7: TetgenExample. The initial mesh with #Th = 3545, the final (optimized) mesh, and statistics of the dihedral angles and the aspect ratio.
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